464XLAT: Breaking Free of IPv4

Cameron.Byrne @ T-Mobile.com NANOG 61 June 2014

Goals of Talk

- 1. Declare victory for IPv6
- 2. Explain IPv6-only approach at T-Mobile US
- 3. Discuss risks related to IPv4-only operations for content providers and App makers

Background

- T-Mobile US is a GSM / UMTS / LTE provider in the USA with 49 Million subscribers
- In 2008, T-Mobile launched the first Android phone. This dramatically changed the mobile data dynamics – more devices, connected for a longer time, all needing IP addresses
- T-Mobile embraced the concept of IPv6-only, since dual-stack required IPv4 that was not available
- NAT64 / DNS64 was a good solution that did not require IPv4 on each client, but some applications failed to work on IPv6-only networks. It is not acceptable to break Spotify or Whatsapp, applications that require IPv4
- T-Mobile, in partnership with NEC and JPIX, documented 464XLAT in the IETF as RFC6877 to overcome the limitations of NAT64 by adding a NAT46 into the client (CLAT)
- Android 4.3 introduced support for 464XLAT in October 2013
- T-Mobile US changed the default settings for all Android 4.3+ phones to be IPv6-only / 464XLAT

Results Are Important

- T-Mobile US launched 8 Android phone models with 464XLAT as the default in the last 8 months, all Android 4.3+ phones will be 464XLAT in the future at T-Mobile US
- 8 million unique IPv6 subscribers in the first 8 months are active on the network
- <u>http://www.worldipv6launch.org/measurements/</u> measurements show 27% of all T-Mobile connections to dual-stack sites are now IPv6
- Over 50% of IPv6-user traffic is end-to-end IPv6 (no translation needed) ← This saves money and makes the network simpler

27% of T-Mobile US Connections use IPv6 to Dual-Stack content

www.worldipv6launch.org/measurements/						
	Network operator measurements, 20th May 2014 (notes)					
Show	25 🔻	entries Search:	T-Mobile			
Participating Network	\$	ASN(s)	\$	IPv6 ¢deployment		
T-Mobile USA	2	21928		27.37%		
Showing 1 to 1	of 1 ent er	ntries (filtered from 207 total entries)				
		First Pr	revious	1 Next Last		

Other major networks on IPv6

464XLAT allows for full functionality on IPv6-only networks

- Dual-stack does not solve the IPv4 number scarcity issue
- IPv6-only + NAT64/DNS64 is very good, but not good enough for full IPv4 replacement (web and email work, but Skype does not work)
- IPv6-only + 464XLAT
 - Solves IPv4 numbering issue by not assigning IPv4 to clients
 - Decouples edge growth from IPv4 availability
 - IPv4-only applications like Skype work on an IPv6-only network because 464XLAT translates IPv4 on the phone to IPv6 on the network

Why not MAP or DS-lite

- Mobile networks don't use DHCP, so no way to setup MAP or DS-lite without some heavy lifting in protocols and standards
- Purely stateless solutions like MAP require many IPv4 addresses to be statically assigned to the MAP domain
- Stateful NAT64 allows greater multiplexing of IPv4 addresses, even port overloading to get beyond 64,000 sessions per IPv4

IPv6 deployment is achievable

- T-Mobile USA did not spend any CapEx on IPv6
- Only introduce 464XLAT on new phones, so we do not disrupt any existing services, leverage normal phone QA process
- Innovative thinking helps reduce deployment costs (hash 128 bit numbers into 32 bit fields in billing records)
- IPv6 will save money in your network (less NAT/CGN, no need to buy IPv4 addresses, ...)

Which Platforms Supports 464XLAT Today?

- YES
- Android 4.3+

- NO
- Blackberry
- Apple
- Windows Phone (?)

THE TECHNICAL DETAILS

464XLAT is just a set of building blocks

- Stateless NAT64 (RFC6145)
 - Client side translation CLAT (NAT4->6)
- Statefull NAT64 (RFC6146)
 - Provider site translation PLAT (NAT6->4)
- DNS64 (RFC 6147)
 - When the FQDN does not have a AAAA record, DNS64 dynamically creates one that allows the client to use IPv6 and the network translates from IPv6 to IPv4 at the NAT64
- Prefix64 Discovery (RFC 7050)
 - Queries for the well-known FQDN ipv4only.arpa, which is by definition IPv4-only. If there is a AAAA response provided, then it is known that a DNS64 is in the path

3 Scenarios in a 464XLAT network

- End-to-end IPv6: Facebook, Google, Wikipedia, Yahoo, Youtube ... IPv6->IPv6
- Application supports IPv6 (web browser) but the server is only IPv4 (<u>www.myspace.com</u>, <u>www.twitter.com</u>, <u>www.amazon.com</u>, ...), so DNS64/NAT64 translates IPv6->IPv4
- Application does not support IPv6 (Whatsapp, Spotify, ...), the client must provide a stateless NAT46 to the application and stateful NAT64 must be in the network: IPv4->IPv6->IPv4

How does Stateless NAT64 work?

- Algorithmically map IPv4 addresses to IPv6 addresses, bidirectional, 1 to 1
 - Not dynamic
 - Deterministic
 - Maps all of IPv4's 32 bits into an IPv6 /96 (or larger prefix)
- Defined in RFC6145
- Example
 - 2001:db8::10.1.1.1 <-> 10.1.1.1
 - 2001:db8::10.2.2.2 <-> 10.2.2.2
 - 2001:db8::www.example.com <-> ipv4 www.example.com

How does Stateful NAT64 work?

- Dynamically translate IPv6 packets to IPv4 packets
 - Dynamic
 - Not deterministic (translation based on available IPv4 pool)
 - Translation state is short-lived and based on session creation and termination
- Defined in RFC6146
- Example
 - Before translation
 - TCP source 2001:db8:abcd::ffff port 555 # client address
 - TCP destination 2001:db8:1234::10.1.1.1 port 80 # NAT64 address
 - After translation
 - TCP source 192.168.1.1 port 555 **# 192.168.1.1 available** from NAT64 pool
 - TCP destination 10.1.1.1 port 80 # Last 32 bits of IPv6 destination

How does DNS64 work?

- When an FQDN does not have a AAAA record, the DNS64 will synthetically create one based on a network defined Pref64
- The pref64 is a prefix hosted on the NAT64 for translation
- Example without DNS64
 - Query = a and aaaa for www.example.com
 - Answer = a = 10.1.1.1, aaaa = NO ERROR
- Example with DNS64
 - Query = a and aaaa for <u>www.example.com</u>
 - Answer = a = 10.1.1.1 AND aaaa = 2001:db8::10.1.1.1

How to make EVERYTHING work on IPv6-only?

Zoom Out: What does this look like in the context of 3GPP GSM / UMTS / LTE ?

High Level View of IPv6 deployment:

Phone, HLR profile, GGSN, NAT64, IPv6 ISP

Zoom in: What does the phone configuration look like: APN Settings

	🛛 👋 📲 📶 📕 11:01 AN
🔯 Edit access poi	nt
Name v6	>
APN fast.t-mobile.com	>
Proxy Not set	>
Port Not set	>
Username Not set	>
Password Not set	>
Server Not set	>
MMSC Not set	>
Multimedia mess	age proxy

	💩 🔐 📶 🛑 11:01 AM
🔯 Edit access po	int
MNC 260	$\mathbf{>}$
Authentication ty Not set	rpe 🔊
APN type default,mms,supl	>
APN protocol	>
APN roaming pro	otocol
APN roaming pro IPv6 Turn APN on/off APN turned on	otocol
APN roaming pro IPv6 Turn APN on/off APN turned on Bearer Unspecified	otocol
APN roaming pro IPv6 Turn APN on/off APN turned on Bearer Unspecified Mobile virtual ner None	otocol

In Android 4.3, "APN Protocol IPv6" for the "APN Type default" triggers the use of 464XLAT by default

IPv6 = 464XLAT

TIME FOR WIRESHARK

Like most things, we start with DNS

23 42.848680	2607:fb90:1007:dde6:f29e:3a3d:2a09:9123	fd00:976a::9	DNS	102 Standard query 0xe796 AAAA webmail.t-mobile.com
24 42.884266	fd00:976a::9	2607:fb90:1007:dde6:f29e:3a3d:2a09:9123	DNS	130 Standard query response 0xe796 AAAA 2607:7700:0:14::ce1d:b25d
25 42.890248	2607:fb90:1007:dde6:f29e:3a3d:2a09:9123	fd00:976a::9	DNS	102 Standard query 0x9d73 A webmail.t-mobile.com
26 42.927300	fd00:976a::9	2607:fb90:1007:dde6:f29e:3a3d:2a09:9123	DNS	118 Standard query response 0x9d73 A 206.29.178.93

- The client is IPv6-only towards the network, but the host OS thinks it is dual-stack since it has an IPv4 CLAT interface and a native IPv6 radio interface
- So, the client does a query for DNS "A" and "AAAA" records
- The DNS64 responds with a synthesized AAAA and the real A
- The synthesized AAAA = Pref64 + real IPv4

Quick Check

 Does the synthesized AAAA match the pref64 + real A?

Next, the UE selects the IPv6 DNS response, and starts TCP

27 42.932794	2607:fb90:1007:dde6:f29e:3a3d:2a09:9123	2607:7700:0:14::ce1d:b25d	тср	96 60522 > https [SYN] Seq=0
28 42.976652	2607:7700:0:14::ce1d:b25d	2607:fb90:1007:dde6:f29e:3a3d:2a09:9123	TCP	100 https > 60522 [SYN, ACK]
29 42.980192	2607:fb90:1007:dde6:f29e:3a3d:2a09:9123	2607:7700:0:14::ce1d:b25d	TCP	88 60522 > https [ACK] Seq=1
30 42.986235	2607:fb90:1007:dde6:f29e:3a3d:2a09:9123	2607:7700:0:14::ce1d:b25d	TLSv1	304 Client Hello

- From the client perspective, this is a native IPv6 end-to-end flow
- But, we know that the DNS is a synthesized AAAA and the client is actually sending its packets to the NAT64 for IPv6->IPv4 stateful translation
- This is just DNS64 / NAT64, no client-side translation needed for this scenario

The full case of 464XLAT double translation: WhatsApp

```
Oueries
  e8.whatsapp.net: type AAAA, class IN
      Name: e8.whatsapp.net
      Type: AAAA (IPv6 address)
      Class: IN (0x0001)
Answers
  e8.whatsapp.net: type AAAA, class IN, addr 2607:7700:0:14::b8ad:a1ba
      Name: e8.whatsapp.net
      Type: AAAA (IPv6 address)
      Class: IN (0x0001)
      Time to live: 48 minutes, 25 seconds
      Data length: 16
      Addr: 2607:7700:0:14::b8ad:a1ba
  e8.whatsapp.net: type AAAA, class IN, addr 2607:7700:0:14::3216:e142
      Name: e8.whatsapp.net
      Type: AAAA (IPv6 address)
      Class: IN (0x0001)
      Time to live: 48 minutes, 25 seconds
      Data length: 16
      Addr: 2607:7700:0:14::3216:e142
  e8.whatsapp.net: type AAAA, class IN, addr 2607:7700:0:14::6ca8:ae02
      Name: e8.whatsapp.net
      Type: AAAA (IPv6 address)
      Class: IN (0x0001)
      Time to live: 48 minutes 25 seconds
      Data length: 16
      Addr: 2607:7700:0:14::6ca8:ae02
        . .
```

SYN is sent from the CLAT address

No.	Time	Source	Destination	Protocol	Length Info
1011	2269.006103	2607:fb90:1007:dde6::464	2607:7700:0:14::6ca8:ae02	тср	96 59056 > xmpp-client [SYN] Seq=0 Win
1012	2269.124309	2607:7700:0:14::6cao:ae02	2607:fb90:1007:dde6::464	TCP	96 xmpp-client > 59056 [SYN, ACK] Seq=
1013	2269.127208	2607:fb90:1007:dde6::464	2607:7700:0:14::6ca8:ae02	TCP	88 59056 > xmpp-client [ACK] Seq=1 Ack
1014	2269.141461	2607:fb90:1007:dde6::464	2607:7700:0:14::6ca8:ae02	TCP	194 [TCP segment of a reassembled PDU]
1015	2269.247794	2607:7700:0:14::6ca8:ae02	2607:fb90:1007:dde6::464	TCP	88 [TCP Window Update] xmpp-client > 5
1016	2269.262505	2607:7700:0:14::6ca8:ae02	2607:fb90:1007:dde6::464	TCP	177 [TCP segment of a reassembled PDU]

Remember, we set the clatd.conf to use the IID of ::464 for CLAT translations

IPv6 is widely deployed today!

4

5

google.com

Enables users to search the world's information, including webpages, images, and videos. Offers... More

2 facebook.com

A social utility that connects people, to keep up with friends, upload photos, share links and ... More

3 youtube.com

YouTube is a way to get your videos to the people who matter to you. Upload, tag and share your... More

yahoo.com

A major internet portal and service provider offering search results, customizable content, cha... More

amazon.com

Amazon.com seeks to be Earth's most customer-centric company, where customers can find and disc... More

6 linkedin.com

A networking tool to find connections to recommended job candidates, industry experts and busin... More

7 wikipedia.org

A free encyclopedia built collaboratively using wiki software. (Creative Commons Attribution-Sh... More

8 ebay.com

International person to person auction site, with products sorted into categories.

9 twitter.com

Social networking and microblogging service utilising instant messaging, SMS or a web interface.

10 bing.com

Search engine developed by Microsoft. Features web, image, video, local, news, and product search.

Major eye-ball networks have enabled IPv6 – T-Mobile US, Comcast, Verizon, AT&T, ...

ww.worldipv6launch.org/measurements/					
	<u>Comcast</u>	7015, 7016, 7725, 7922, 11025, 13367, 13385, 20214, 21508, 22258, 33287, 33489, 33490, 33491, 33650, 33651, 33652, 33653, 33654, 33655, 33656, 33657, 33659, 33660, 33661, 33662, 33664, 33665, 33666, 33667, 33668, 36733	27.79%		
	ATT	6389, 7018, 7132	19.15%		
	<u>KDDI</u>	2516	11.67%		
	Verizon Wireless	6167, 22394	50.58%		
	Time Warner Cable	7843, 10796, 11351, 11426, 11427, 12271, 20001	9.05%		
	<u>Deutsche Telekom</u> <u>AG</u>	3320	21.98%		
	Free	12322	37.86%		
	<u>Telenet</u>	6848	31.25%		
	Liberty Global	5089, 6830, 20825, 29562	3.35%		
	RCS & RDS	8708	24.38%		
	Swisscom	3303	30.53%		
	Telefonica del Peru	6147	7.30%		
	SoftBank BB	17676	3.23%		
	Chubu Telecommunications	18126	26.63%		
	T-Mobile USA	21928	27.37%		
	Belgacom	5432	10.18%		
	Hughes Network Systems	6621	27.41%		
	VOO	12392	31.55%		
	StarHub	4657, 55430	18.43%		
	Opera Software ASA	39832	11.52%		
	XS4ALL	3265	22.95%		
	Forthnet	1241	4.76%		
	Google Fiber	16591	76.13%		
	Janet	786	4.61%		
	China Telecom	4134, 4809	0.24%		
	Showing 1 t	o 25 of 207 entries			
		First Previous 1 2 3 4 5	Next Last		

Scale: Internet of things needs IPv6 Scale: Cloud needs IPv6

Lesson Learned

- 1. IPv6-only works
- 2. IETF works for operators (making sausage is not pretty, but it works)
- 3. Breaking stuff is not ok
- 4. Question the answers (if dual-stack, then what?)
- 5. Don't boil the ocean
 - 1. Tether is still IPv4-only
 - 2. Old phone are still IPv4

Summary

- IPv4 does not fit the business needs to grow the edge of our networks fueled by growth from internet of things and cloud
- IPv6 works today and is deployed on some of the largest edge networks, backbones, and content clouds
- 464XLAT allows networks to grow without many public IPv4 addresses
- With IPv6-only networks being deployed, IPv4 is now a legacy liability ...going the way of Windows XP

Big Picture: We must avoid the Internet's largest growth engines (mobile, cloud, "things") from being indefinitely tied to scarce IPv4 and fragile stateful NAT44.